Ohta, K., Miyagawa, O., Tsutsui, H. \& Mitsunobu, O. (1993). Bull. Chem. Soc. Jpn, 66, 523-535.
Ronald, R. C. \& Gurusiddaiah, S. (1980). Tetrahedron Lett. 21, 681684.

Seidel, W. \& Seebach, D. (1982). Tetrahedron Lett. 23, 159-162.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stoe \& Cie (1992a). DIF4. Diffractometer Control Program. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1992b). REDU4. Data Reduction Program. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1999). C55, 1313-1315

X-ray investigations of benzopyran derivatives substituted at position 3

Agnieszka J. Rybarczyk, ${ }^{a}$ Tomasz A. Olszak, ${ }^{a}$
Magdalena Maeecka and Jolanta Nawrot-
Modranka ${ }^{b}$
${ }^{a}$ Department of Crystallography, University of Lódź, Pomorska 149/153, PL-90236 Łódź, Poland, and ${ }^{b}$ Institute of Inorganic Chemistry, Medical University, Muszyńskiego 1, PL-90236 Łódź, Poland. E-mail: arybarcz@krysia.uni.lodz.pl

(Received 20 January 1999; accepted 30 March 1999)

Abstract

The structures of two isomeric compounds, (E)-3-\{[2-(dimethoxythiophosphoryl)-2-methylhydrazino]methylidene $\}$ - 3,4 -dihydro- 2 H -1-benzopyran- 2,4 -dione, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PS}$, and 3-\{[2-(dimethoxythiophosphoryl)-2-methylhydrazino carbonyl $\}$-3,4-dihydro- 4 H -1-benzo-pyran-4-one, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PS}$, have been determined from X-ray data and compared. The benzopyran moieties of both molecules are planar. Extra six-membered rings are formed by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The geometry around the \mathbf{P} atoms is tetrahedral, slightly deformed to trigonal pyramidal.

Comment

This paper opens X-ray studies on a group of benzopyran derivatives substituted with phosphorohydrazide at position 3. These compounds are expected to exhibit anticancer activity (Nawrot-Modranka \& Graczyk, 1999). Investigations of (E)-3-\{[2-(dimethoxythio-phosphoryl)-2-methylhydrazino] methylidene \}-3,4-di-hydro-4 H -1-benzopyran-4-one, (I), were undertaken to determine its tautomeric form in the crystal state, since H^{1} NMR spectroscopy did not give conclusive informa-
tion about its structure. Its isomer, 3 -\{[2-(dimethoxythio-phosphoryl)-2-methylhydrazino]carbonyl $\}$-3,4-dihydro2 H -1-benzopyran-2,4-dione, (II), was also studied. The study of (I) and (II) was carried out in order to obtain structural information about the conformation of the rings and the environment around the \mathbf{P} atom in both molecules.

(I)

(II)

The title compounds differ from each other only in the position of the carbonyl O atom [O621 in (I) and O51 in (II)]. Their conformations are nearly the same.
The fused benzene and pyran rings are flat and almost coplanar. Both molecules are found with the amino NH group taking part in intramolecular hydrogen bonds, forming planar six-membered rings in both compounds; the maximum deviation from the best plane (Nardelli, 1996) is 0.020 (2) \AA for (I) and 0.010 (1) \AA for (II).

Fig. 1. ORTEX (McArdle, 1995) drawing of compound (I), showing the atomic numbering scheme and the intramolecular hydrogen bond. Displacement ellipsoids are shown at the 40% probability level and H atoms are shown as spheres of arbitrary radii.

Fig. 2. ORTEX (McArdle, 1995) drawing of compound (II), showing the atomic numbering scheme and the intramolecular hydrogen bond. Displacement ellipsoids are shown at the 40% probability level and H atoms are shown as spheres of arbitrary radii.

The planar conformations of the benzopyran skeleton and the hydrogen-bonded rings seem to be stabilized by a weak interaction involving the carbonyl O641 atom and the benzene H 651 atom: $\mathrm{O} \cdots \mathrm{H}$ is 2.57 (3) \AA in (I) and 2.53 (2) \AA in (II). Also, the weak interaction between O 51 and H621 [2.44(2) \AA in (II)] has some influence on the planarity of the molecule.

As expected (Cambridge Structural Database, 1998), the \mathbf{P} atoms are tetrahedrally four-coordinate in both molecules. The bond angles around the P atoms (see Tables 1 and 3) indicate a slight deformation towards a trigonal pyramid; this is caused by the different substituents, in particular the relatively long $\mathrm{P} 1-\mathrm{S} 2$ bond.

Bonds distances and angles in both molecules are in good agreement with expected values (Allen et al., 1987).

Experimental

The two title compounds were prepared by the reaction of equimolar quantities of N^{1}-dimethoxythiophosphoro-N^{1}-methylhydrazide with methyl 4-oxo-4H-1-benzopyran-3carboxylate [for (I)] or 4-oxo-4 H -1-benzopyran-3-carbonyl chloride [for (II)] in methanol solutions, as shown in the synthesis scheme above. Suitable crystals were obtained at room temperature by slow evaporation from methanol.

Compound (I)

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PS}$
Mo $K \alpha$ radiation
$M_{r}=342.30$
Monoclinic
$P 2_{1} / c$
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$a=10.866(2) \AA$
$b=12.390(1) \AA$
$c=11.845(1) \AA$
$\beta=101.20(1)^{\circ}$
$V=1564.3(4) \AA^{3}$
$Z=4$
$D_{x}=1.453 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\theta=18.71-22.68^{\circ}$
$\mu=0.333 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate
$0.6 \times 0.5 \times 0.4 \mathrm{~mm}$
Colourless

Data collection

Rigaku AFC-5S diffractometer
$2 \theta / \omega$ scan
$R_{\text {int }}=0.020$

Absorption correction: analytical (de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.831, T_{\text {max }}=0.860$
3800 measured reflections
3617 independent reflections
2135 reflections with

$$
I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.110$
$S=0.943$
3617 reflections
258 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0563 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.039$
$\Delta \rho_{\text {max }}=0.284 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.198 \mathrm{e}^{-3}$
Extinction correction:
SHELXL97 (Sheldrick, 1997)

Extinction coefficient: 0.0026 (8)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I)

$\mathrm{P} 1-\mathrm{O} 13$	$1.558(2)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.400(2)$
$\mathrm{P} 1-\mathrm{O} 11$	$1.577(2)$	$\mathrm{N} 3-\mathrm{C} 31$	$1.463(3)$
Pl 3 N 3	$1.670(2)$	$\mathrm{O} 13-\mathrm{C} 14$	$1.431(3)$
$\mathrm{Pl}-\mathrm{S} 2$	$1.905(1)$	$\mathrm{C} 5-\mathrm{C} 63$	$1.382(3)$
$\mathrm{O} 11-\mathrm{C} 12$	$1.446(3)$		
$\mathrm{O} 13-\mathrm{Pl}-\mathrm{O} 11$	$99.9(1)$	$\mathrm{N} 4-\mathrm{N} 3-\mathrm{C} 31$	$112.0(2)$
$\mathrm{O} 13-\mathrm{Pl}-\mathrm{N} 3$	$104.3(1)$	$\mathrm{N} 4-\mathrm{N} 3-\mathrm{P} 1$	$113.7(1)$
$\mathrm{O} 11-\mathrm{Pl}-\mathrm{N} 3$	$102.4(1)$	$\mathrm{C} 31-\mathrm{N} 3-\mathrm{P} 1$	$121.6(2)$
$\mathrm{O} 13-\mathrm{P} 1-\mathrm{S} 2$	$117.7(1)$	$\mathrm{C} 5-\mathrm{N} 4-\mathrm{N} 3$	$121.6(2)$
$\mathrm{O} 11-\mathrm{Pl}-\mathrm{S} 2$	$117.3(1)$	$\mathrm{C} 14-\mathrm{O} 13-\mathrm{P} 1$	$123.4(2)$
$\mathrm{N} 3-\mathrm{Pl}-\mathrm{S} 2$	$113.1(1)$	$\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 3$	$123.7(2)$
$\mathrm{C} 12-\mathrm{O} 11-\mathrm{P} 1$	$119.6(2)$		

Table 2. Hydrogen-bonding geometry ($A,^{\circ}$) for (I)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 4 — \mathrm{H} 41 \cdots \mathrm{O} 641$	$0.81(3)$	$1.97(2)$	$2.627(3)$	$138(2)$

Compound (II)

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{5}$ PS
Mo $K \alpha$ radiation
$M_{r}=342.30$
Triclinic
$P \overline{1}$
$\lambda=0.71073 \AA$
Cell parameters from 24
reflections
$a=7.666$ (3) \AA
$b=15.521(2) \AA$
$c=7.470(2) \AA$
$\alpha=101.53(2)^{\circ}$
$\beta=115.50(3)^{\circ}$
$\gamma=91.91(3)^{\circ}$
$V=778.8(4) \AA^{3}$
$Z=2$
$D_{x}=1.460 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5S diffractometer
$2 \theta / \omega$ scan
Absorption correction: analytical (de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.823, T_{\text {max }}=0.914$
11308 measured reflections
5654 independent reflections
4593 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.119$
$S=1.085$
5654 reflections
261 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0672 P)^{2}\right.$
$+0.0863 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.003$
$\theta=10.86-15.67^{\circ}$
$\mu=0.334 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate
$0.7 \times 0.6 \times 0.3 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=32.57^{\circ}$
$h=-11 \rightarrow 11$
$k=-23 \rightarrow 23$
$l=-11 \rightarrow 11$
3 standard reflections every 150 reflections intensity decay: <2\%

Table 3. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (II)

$\mathrm{P} 1-\mathrm{O} 13$	$1.575(1)$	$\mathrm{C} 63-\mathrm{C} 5$	$1.491(2)$
$\mathrm{P} 1-\mathrm{O} 11$	$1.570(1)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.386(1)$
$\mathrm{P} 1-\mathrm{N} 3$	$1.647(1)$	$\mathrm{N} 3-\mathrm{C} 31$	$1.446(2)$
$\mathrm{P} 1-\mathrm{S} 2$	$1.911(1)$	$\mathrm{O} 1-\mathrm{C} 5$	$1.221(2)$
$\mathrm{O} 11-\mathrm{C} 12$	$1.438(2)$	$\mathrm{C} 5-\mathrm{N} 4$	$1.350(2)$
$\mathrm{O} 13-\mathrm{P} 1-\mathrm{O} 11$	$99.1(1)$	$\mathrm{N} 4-\mathrm{N} 3-\mathrm{C} 31$	$115.7(1)$
$\mathrm{O} 13-\mathrm{P} 1-\mathrm{N} 3$	$99.4(1)$	$\mathrm{N} 4-\mathrm{N} 3-\mathrm{P} 1$	$120.4(1)$
$\mathrm{O} 11-\mathrm{P} 1-\mathrm{N} 3$	$108.2(1)$	$\mathrm{C} 31-\mathrm{N} 3-\mathrm{P} 1$	$122.2(1)$
$\mathrm{O} 13-\mathrm{P} 1-\mathrm{S} 2$	$116.7(1)$	$\mathrm{O} 51-\mathrm{C} 5-\mathrm{N} 4$	$122.9(1)$
$\mathrm{O} 11-\mathrm{P} 1-\mathrm{S} 2$	$116.5(1)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 63$	$122.5(1)$
$\mathrm{N} 3-\mathrm{P} 1-\mathrm{S} 2$	$114.6(1)$	$\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 63$	$114.6(1)$
$\mathrm{C} 12-\mathrm{O} 11-\mathrm{P} 1$	$121.3(1)$	$\mathrm{C} 5-\mathrm{N} 4-\mathrm{N} 3$	$120.7(1)$
$\mathrm{C} 14-\mathrm{O} 13-\mathrm{P} 1$	$121.1(1)$		

Table 4. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$ for (II)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 41 \cdots \mathrm{O} 641$	$0.84(2)$	$2.02(2)$	$2.684(1)$	$135(2)$

For (I), atoms H141, H142 and H143 had $U(\mathrm{H})$ fixed to $1.3 U_{\text {eq }}$ of their parent atoms. For both (I) and (II), the other methyl H atoms were constrained to their parent C atom by $D F I X$ in SHELXL97 (Sheldrick, 1997) using a rigid body model. The remaining H atoms had all their parameters refined.

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989b); program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL97; molecular graphics: ORTEX (McArdle, 1995). Software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1996) for (I); SHELXL97 for (II).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1410). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Cambridge Structural Database (1998). Version 5.16. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England. McArdle, P. (1995). J. Appl. Cryst. 28, 65.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (1989a). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1989b). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nardelli, M. (1996). J. Appl. Cryst. 29, 296-300.
Nawrot-Modranka, J. \& Graczyk, J. (1999). In preparation.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1999). C55, 1315-1317

Dimethyl α-(2-benzyl-1-methyl-4-phenyl-sulfonylpyrrolo[3,4-b]indol-3-yl)maleate

L. Govindasamy, ${ }^{a}$ D. Velmurugan, ${ }^{a}$ S. Shanmuga Sundara Raj ${ }^{b}$ and Hoong-Kun Fun ${ }^{b}$
${ }^{a}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{b}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: crystal@giasmd01.vsnl.net.in

(Received 13 November 1998; accepted 21 April 1999)

Abstract

The title molecule, $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}$, consists of a methyl-pyrrolo[3,4-b]indole ring with a phenylsulfonyl, a phenyl and a dimethyl maleate group as exocyclic sub-

